Robotic fluidic coupling and monitoring of vascularized 2-channel organ chips
2020
Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, USA
Here, an "Interrogator" instrument was described that uses fluid robotics, a customised software package and an integrated mobile microscope to enable automated culture, perfusion, media addition, fluidic linkage, sample collection and in situ microscopic imaging of up to 10 organ chips in a standard tissue culture incubator. The automated interrogator platform was able to maintain the viability and organ-specific functions of 8 different vascularised 2-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood-brain barrier (BBB) and brain) for 3 weeks in culture when fluidically coupled intermittently through their media reservoirs and endothelium-lined vascular channels using a common blood replacement medium. When an inulin tracer was perfused through the human body-on-chip (HuBoC) fluidic network with multiple organs, it was possible to accurately predict the quantitative distribution of this tracer using a physiologically based in silico model of the experimental system (Multi-Compartmental Reduced Order, MCRO). This automated culture platform allows non-invasive imaging of cells in human organ chips and repeated sampling from both the vascular and interstitial compartments without compromising fluidic coupling, which should facilitate future HuBoc studies and pharmacokinetic analyses in vitro.
Robotic fluidic coupling and interrogation of multiple vascularized organ chips
Donald E. Ingber
Added on: 11-09-2021
[1] https://www.nature.com/articles/s41551-019-0497-x