Predicting the toxicity of nanoparticles for safer industrial materials
November 2020
Jožef Stefan Institute, Ljubljana, Slovenia
The prediction of diseases associated with nanomaterials is currently hampered by an incomplete understanding of the underlying mechanisms. As part of the EU project "SmartNanoTox", it has now been found that for special materials, the long-term inflammatory response of the lung to a single nanoparticle exposure can be attributed to two previously unknown key cellular events. First, a new quarantine process, i.e. the deposition of excreted particles enveloped by biological molecules on the cell surface; second, the so-called nanomaterial cycle, which conditions the uptake and excretion of nanoparticles between different alveolar lung cell types. With the help of a few in vitro measurement data in combination with in silico modelling, the scientists were able to predict the acute or chronic toxicity of nanoparticles and thus the course of inflammatory reactions in the lung for 15 different materials.
Prediction of chronic inflammation for inhaled particles: the impact of material cycling and quarantining in the lung epithelium
Janez Štrancar, Hana Kokot
Added on: 12-14-2020
[1] https://onlinelibrary.wiley.com/doi/10.1002/adma.202070353[2] https://www.bionity.com/en/news/1168834/animal-free-method-predicts-nanoparticle-toxicity-for-safer-industrial-materials.html